Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
نویسندگان
چکیده
Large-scale distributed training requires significant communication bandwidth for gradient exchange that limits the scalability of multi-node training, and requires expensive high-bandwidth network infrastructure. The situation gets even worse with distributed training on mobile devices (federated learning), which suffers from higher latency, lower throughput, and intermittent poor connections. In this paper, we find 99.9% of the gradient exchange in distributed SGD are redundant, and propose Deep Gradient Compression (DGC) to greatly reduce the communication bandwidth. To preserve accuracy during this compression, DGC employs four methods: momentum correction, local gradient clipping, momentum factor masking, and warm-up training. We have applied Deep Gradient Compression to image classification, speech recognition, and language modeling with multiple datasets including Cifar10, ImageNet, Penn Treebank, and Librispeech Corpus. On these scenarios, Deep Gradient Compression achieves a gradient compression ratio from 270× to 600× without losing accuracy, cutting the gradient size of ResNet-50 from 97MB to 0.35MB, and for DeepSpeech from 488MB to 0.74MB. Deep gradient compression enables large-scale distributed training on inexpensive commodity 1Gbps Ethernet and facilitates distributed training on mobile.
منابع مشابه
Distributed Training
Large-scale distributed training requires significant communication bandwidth for gradient exchange that limits the scalability of multi-node training, and requires expensive high-bandwidth network infrastructure. The situation gets even worse with distributed training on mobile devices (federated learning), which suffers from higher latency, lower throughput, and intermittent poor connections....
متن کاملVariance-based Gradient Compression for Efficient Distributed Deep Learning
Due to the substantial computational cost, training state-of-the-art deep neural networks for large-scale datasets often requires distributed training using multiple computation workers. However, by nature, workers need to frequently communicate gradients, causing severe bottlenecks, especially on lower bandwidth connections. A few methods have been proposed to compress gradient for efficient c...
متن کاملHomomorphic Parameter Compression for Distributed Deep Learning Training
Distributed training of deep neural networks has received significant research interest, and its major approaches include implementations on multiple GPUs and clusters. Parallelization can dramatically improve the efficiency of training deep and complicated models with large-scale data. A fundamental barrier against the speedup of DNN training, however, is the trade-off between computation and ...
متن کاملQSGD: Communication-Efficient SGD via Gradient Quantization and Encoding
Parallel implementations of stochastic gradient descent (SGD) have received significant research attention, thanks to its excellent scalability properties. A fundamental barrier when parallelizing SGD is the high bandwidth cost of communicating gradient updates between nodes; consequently, several lossy compresion heuristics have been proposed, by which nodes only communicate quantized gradient...
متن کاملDecentralization Meets Quantization
Optimizing distributed learning systems is an art of balancing between computation and communication. There have been two lines of research that try to deal with slower networks: quantization for low bandwidth networks, and decentralization for high latency networks. In this paper, we explore a natural question: can the combination of both decentralization and quantization lead to a system that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.01887 شماره
صفحات -
تاریخ انتشار 2017